Package: bnnSurvival 0.1.5

bnnSurvival: Bagged k-Nearest Neighbors Survival Prediction

Implements a bootstrap aggregated (bagged) version of the k-nearest neighbors survival probability prediction method (Lowsky et al. 2013). In addition to the bootstrapping of training samples, the features can be subsampled in each baselearner to break the correlation between them. The Rcpp package is used to speed up the computation.

Authors:Marvin N. Wright

bnnSurvival_0.1.5.tar.gz
bnnSurvival_0.1.5.zip(r-4.5)bnnSurvival_0.1.5.zip(r-4.4)bnnSurvival_0.1.5.zip(r-4.3)
bnnSurvival_0.1.5.tgz(r-4.4-x86_64)bnnSurvival_0.1.5.tgz(r-4.4-arm64)bnnSurvival_0.1.5.tgz(r-4.3-x86_64)bnnSurvival_0.1.5.tgz(r-4.3-arm64)
bnnSurvival_0.1.5.tar.gz(r-4.5-noble)bnnSurvival_0.1.5.tar.gz(r-4.4-noble)
bnnSurvival_0.1.5.tgz(r-4.4-emscripten)bnnSurvival_0.1.5.tgz(r-4.3-emscripten)
bnnSurvival.pdf |bnnSurvival.html
bnnSurvival/json (API)

# Install 'bnnSurvival' in R:
install.packages('bnnSurvival', repos = c('https://mnwright.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mnwright/bnnsurvival/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

2.70 score 1 stars 5 scripts 215 downloads 6 exports 104 dependencies

Last updated 7 years agofrom:694072bc55. Checks:OK: 6 ERROR: 3. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-win-x86_64OKOct 25 2024
R-4.5-linux-x86_64OKOct 25 2024
R-4.4-win-x86_64OKOct 25 2024
R-4.4-mac-x86_64OKOct 25 2024
R-4.4-mac-aarch64OKOct 25 2024
R-4.3-win-x86_64ERROROct 25 2024
R-4.3-mac-x86_64ERROROct 25 2024
R-4.3-mac-aarch64ERROROct 25 2024

Exports:bnnSurvivalpredictpredictionsprintshowtimepoints

Dependencies:backportsbase64encbslibcachemcheckmatecliclustercmprskcodetoolscolorspacedata.tablediagramdigestdoParallelevaluatefansifarverfastmapfontawesomeforeachforeignFormulafsfuturefuture.applyggplot2globalsgluegridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvmagrittrMASSMatrixMatrixModelsmemoisemetsmgcvmimemultcompmunsellmvtnormnlmennetnumDerivparallellypecpillarpkgconfigplotrixpolsplineprodlimprogressrPublishquantregR6rangerrappdirsRColorBrewerRcppRcppArmadilloRcppEigenriskRegressionrlangrmarkdownrmsrpartrstudioapisandwichsassscalesshapeSparseMSQUAREMstringistringrsurvivalTH.datatibbletimeregtinytexutf8vctrsviridisviridisLitewithrxfunyamlzoo