Package: bnnSurvival 0.1.5

bnnSurvival: Bagged k-Nearest Neighbors Survival Prediction

Implements a bootstrap aggregated (bagged) version of the k-nearest neighbors survival probability prediction method (Lowsky et al. 2013). In addition to the bootstrapping of training samples, the features can be subsampled in each baselearner to break the correlation between them. The Rcpp package is used to speed up the computation.

Authors:Marvin N. Wright

bnnSurvival_0.1.5.tar.gz
bnnSurvival_0.1.5.zip(r-4.5)bnnSurvival_0.1.5.zip(r-4.4)bnnSurvival_0.1.5.zip(r-4.3)
bnnSurvival_0.1.5.tgz(r-4.4-x86_64)bnnSurvival_0.1.5.tgz(r-4.4-arm64)bnnSurvival_0.1.5.tgz(r-4.3-x86_64)bnnSurvival_0.1.5.tgz(r-4.3-arm64)
bnnSurvival_0.1.5.tar.gz(r-4.5-noble)bnnSurvival_0.1.5.tar.gz(r-4.4-noble)
bnnSurvival_0.1.5.tgz(r-4.4-emscripten)bnnSurvival_0.1.5.tgz(r-4.3-emscripten)
bnnSurvival.pdf |bnnSurvival.html
bnnSurvival/json (API)

# Install 'bnnSurvival' in R:
install.packages('bnnSurvival', repos = c('https://mnwright.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/mnwright/bnnsurvival/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

cpp

2.70 score 1 stars 5 scripts 241 downloads 6 exports 104 dependencies

Last updated 8 years agofrom:694072bc55. Checks:6 OK, 3 ERROR. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 23 2025
R-4.5-win-x86_64OKJan 23 2025
R-4.5-linux-x86_64OKJan 23 2025
R-4.4-win-x86_64OKJan 23 2025
R-4.4-mac-x86_64OKJan 23 2025
R-4.4-mac-aarch64OKJan 23 2025
R-4.3-win-x86_64ERRORJan 23 2025
R-4.3-mac-x86_64ERRORJan 23 2025
R-4.3-mac-aarch64ERRORJan 23 2025

Exports:bnnSurvivalpredictpredictionsprintshowtimepoints

Dependencies:backportsbase64encbslibcachemcheckmatecliclustercmprskcodetoolscolorspacedata.tablediagramdigestdoParallelevaluatefansifarverfastmapfontawesomeforeachforeignFormulafsfuturefuture.applyggplot2globalsgluegridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvmagrittrMASSMatrixMatrixModelsmemoisemetsmgcvmimemultcompmunsellmvtnormnlmennetnumDerivparallellypecpillarpkgconfigplotrixpolsplineprodlimprogressrPublishquantregR6rangerrappdirsRColorBrewerRcppRcppArmadilloRcppEigenriskRegressionrlangrmarkdownrmsrpartrstudioapisandwichsassscalesshapeSparseMSQUAREMstringistringrsurvivalTH.datatibbletimeregtinytexutf8vctrsviridisviridisLitewithrxfunyamlzoo